Mathematical models are a powerful method to understand and control the spread of Huanglongbing
نویسندگان
چکیده
Huanglongbing (HLB), or citrus greening, is a global citrus disease occurring in almost all citrus growing regions. It causes substantial economic burdens to individual growers, citrus industries and governments. Successful management strategies to reduce disease burden are desperately needed but with so many possible interventions and combinations thereof it is difficult to know which are worthwhile or cost-effective. We review how mathematical models have yielded useful insights into controlling disease spread for other vector-borne plant diseases, and the small number of mathematical models of HLB. We adapt a malaria model to HLB, by including temperature-dependent psyllid traits, "flushing" of trees, and economic costs, to show how models can be used to highlight the parameters that require more data collection or that should be targeted for intervention. We analyze the most common intervention strategy, insecticide spraying, to determine the most cost-effective spraying strategy. We find that fecundity and feeding rate of the vector require more experimental data collection, for wider temperatures ranges. Also, the best strategy for insecticide intervention is to spray for more days rather than pay extra for a more efficient spray. We conclude that mathematical models are able to provide useful recommendations for managing HLB spread.
منابع مشابه
Mathematical modeling, analysis and simulation of Ebola epidemics
Mathematical models are the most important tools in epidemiology to understand previous outbreaks of diseases and to better understand the dynamics of how infections spread through populations. Many existing models closely approximate historical disease patterns. This article investigates the mathematical model of the deadly disease with severe and uncontrollable bleeding, Ebola which is...
متن کاملAIDS Epidemic Modeling With Different Demographic Structures
The most urgent public health problem today is to devise effective strategies to minimize the destruction caused by the AIDS epidemic. Mathematical models based on the underlying transmission mechanisms of the AIDS virus can help the medical/scientific community understand and anticipate its spread in different populations and evaluate the potential effectiveness of different approaches for bri...
متن کاملSPOT PATTERNS IN GRAY SCOTT MODEL WITH APPLICATION TO EPIDEMIC CONTROL
In this work, we analyse a pair of two-dimensional coupled reaction-diusion equations known as the Gray-Scott model, in which spot patterns have been observed. We focus on stationary patterns, and begin by deriving the asymptotic scaling of the parameters and variables necessary for the analysis of these patterns. A complete bifurcation study of these solutions is presented. The main mathematic...
متن کاملA numerical investigation of a reaction-diffusion equation arises from an ecological phenomenon
This paper deals with the numerical solution of a class of reaction diffusion equations arises from ecological phenomena. When two species are introduced into unoccupied habitat, they can spread across the environment as two travelling waves with the wave of the faster reproducer moving ahead of the slower.The mathematical modelling of invasions of species in more complex settings that include ...
متن کاملNumerical solution of the spread of infectious diseases mathematical model based on shifted Bernstein polynomials
The Volterra delay integral equations have numerous applications in various branches of science, including biology, ecology, physics and modeling of engineering and natural sciences. In many cases, it is difficult to obtain analytical solutions of these equations. So, numerical methods as an efficient approximation method for solving Volterra delay integral equations are of interest to many res...
متن کامل